Una storia di amicizia?
Il problema della misura in meccanica quantistica
di Lorenzo Maccone

Erwin Schrödinger: uno dei padri della meccanica quantistica a.
Rappresentazione grafica del paradosso dell’ “amico di Wigner” (da Eugene Wigner che ne diede la prima formulazione). Immaginiamo che un amico di Wigner effettui delle misure su un sistema fisico dentro un laboratorio isolato, mentre Wigner, fuori dal laboratorio, svolge esperimenti sull’amico che misura. La contraddizione consiste nel fatto che il laboratorio è un sistema isolato, dove si fanno misure, e i postulati quantistici ci dicono quindi che l’evoluzione (dell’amico) è sia deterministica che probabilistica.
La meccanica quantistica ha un problema. Come tutte le teorie fisiche, è basata su postulati che a loro volta si basano su esperimenti. Il problema è che due dei postulati sembrano contraddirsi. Il postulato di evoluzione (l’equazione di Schrödinger) dice che l’evoluzione di sistemi isolati è deterministica: posso prevedere esattamente quello che accadrà. Invece, il postulato di misura (regola di Born) dice che i risultati delle misure sono probabilistici: in generale non posso prevedere quale risultato otterrò. A prima vista non sembra esserci contraddizione perché le misure non avvengono in sistemi isolati. Però possiamo pensare di prendere un laboratorio dove si compie una misura e isolarlo completamente dall’esterno. Ora siamo nei guai: il postulato di Schrödinger ci dice che possiamo prevedere esattamente quello che accadrà nel laboratorio, il postulato di Born ci dice il contrario! Questo paradosso è conosciuto con il nome di “amico di Wigner”, perchè fu da lui proposto: Wigner suggerì di chiudere un suo amico nel laboratorio isolato a compiere misure, mentre lui (fuori dal laboratorio) avrebbe fatto esperimenti sull’amico che misura. Siccome il laboratorio è un sistema isolato dove si fanno misure, i postulati ci dicono che l’evoluzione dell’amico è sia deterministica che probabilistica: una contraddizione! (Per la verità, andrebbe chiamato “argomento dell’ex amico”: la loro amicizia non sopravvivrebbe agli esperimenti (torture?) di Wigner.)

Questa è una delle varie versioni del “problema della misura”, anche se in verità il vero problema è che i fisici non riescono a mettersi d’accordo su quale sia il “problema della misura”. Alcuni, anzi, affermano che non c’è proprio nessun problema. La prima possibile soluzione del paradosso dell’amico è quella più ovvia: supponiamo che l’amico e il laboratorio non siano sistemi quantistici e quindi non siano vincolati dai postulati della meccanica quantistica. Questa soluzione dice che la meccanica quantistica non è una teoria universale, ma si applica solamente ai sistemi microscopici. Il problema in tal caso è duplice. Da una parte non abbiamo alcuna evidenza di una frontiera tra il mondo classico e quello quantistico, nonostante i molti esperimenti per scoprirla. Dall’altra, non è banale trovare una teoria che metta d’accordo la meccanica quantistica per sistemi micro e la meccanica classica su sistemi macro. La più importante teoria che riesce in questo difficile compito è la teoria di Ghirardi-Rimini-Weber, dal nome dei tre italiani che l’hanno proposta. Ma, nelle parole dello stesso Ghirardi, tale teoria è stata ormai quasi falsificata, nel senso che è stata dimostrata l’esistenza di fenomeni quantistici in oggetti talmente macroscopici dal rendere la teoria stessa inutile nel dividere il mondo classico dal mondo quantistico (vd. Sulle tracce felpate del gatto di Schrödinger sugli esperimenti ai LNGS, ndr).
Se teorie di questo genere dovessero essere falsificate, vuol dire che non possiamo risolvere il paradosso dell’amico appellandoci al fatto che l’amico è un sistema classico. Cioè dobbiamo trattare l’amico (e noi stessi!) come sistemi quantistici, per quanto strano possa sembrare. Quindi dobbiamo cercare una spiegazione diversa del paradosso dell’amico. Uno potrebbe semplicemente ignorare il problema. Questo è l’atteggiamento della maggior parte dei fisici, i quali si accontentano dell’interpretazione da libro di testo (“interpretazione di Copenhagen”) della meccanica quantistica che, sostanzialmente, fa finta di niente. Naturalmente ciò è insoddisfacente dal punto di vista concettuale, ma all’atto pratico il paradosso dell’amico non ha nessuna conseguenza: la nostra tecnologia è ancora lontanissima dal poter fare esperimenti su sperimentatori che fanno esperimenti (gli amici dei fisici possono stare tranquilli!).

GianCarlo Ghirardi b.
GianCarlo Ghirardi che, insieme ai colleghi Alberto Rimini e Tullio Weber, ha elaborato una teoria (nota come “GRW” dalle iniziali dei loro cognomi), che si pone lo scopo di rendere compatibili il mondo classico e il mondo quantistico.
 

Per cercare di risolvere il paradosso dell’amico, bisogna fare un passo indietro per capire cosa vuol dire che i risultati delle misure sono probabilistici (non determinati). Siamo abituati a usare le probabilità per descrivere la nostra ignoranza: non conosciamo la traiettoria esatta della moneta lanciata per aria e assegniamo probabilità 1/2 che venga testa o croce; non conosciamo la sequenza delle carte da gioco e assegniamo una probabilità 1/52 di estrarre l’asso di picche dal mazzo e così via. Possiamo dire la stessa cosa della probabilità dei risultati delle misure quantistiche? Cioè, possiamo dire che l’impossibilità di prevedere il risultato è dovuto a qualcosa (una variabile nascosta) che non conosciamo?
Questa era la speranza di Einstein, che riteneva che la meccanica quantistica fosse incompleta. Tale speranza si infrange catastroficamente contro il teorema di Bell che, sostanzialmente, dice: “ogni completamento della meccanica quantistica con variabili nascoste è necessariamente non locale”. Cioè una persona che conoscesse le variabili nascoste potrebbe comunicare istantaneamente a distanze arbitrarie. La cosa sembra abbastanza innocua, ma la teoria della relatività dice che, se potessimo comunicare a velocità superiori a quelle della luce, potremmo invertire l’ordine temporale di alcuni eventi. E se i due eventi sono uno la causa dell’altro, potremmo invertire la causa e l’effetto! In altre parole, le variabili nascoste non locali sono in contraddizione con la causalità, per via della relatività di Einstein. Proprio lo stesso Einstein che suggeriva l’esistenza di variabili nascoste: ironico, no?
Quindi, Bell ci dice sostanzialmente che, se vogliamo descrivere le probabilità quantistiche con variabili nascoste, dobbiamo abbandonare la causalità oppure la relatività. (Qui stiamo semplificando: il dibattito scientifico sul teorema di Bell è ancora molto vivo, ma la sostanza è questa). Esistono quindi due possibili risposte al teorema di Bell: la “meccanica bohmiana” (da David Bohm), che accetta l’esistenza delle variabili nascoste abbandonando la causalità relativistica, oppure tutte le altre interpretazioni della meccanica quantistica, che rinunciano alle variabili nascoste per salvare la causalità relativistica. Entrambe le opzioni sono insoddisfacenti, ma il teorema di Bell non ci lascia scelta. La meccanica bohmiana risolve il problema della misura, perché la probabilità del postulato di Born si può giustificare con l’ignoranza delle variabili nascoste (ricordate, la probabilità è sempre legata all’ignoranza di qualcosa). Ma il prezzo pagato è decisamente inaccettabile per molti: la causalità relativistica è una conseguenza diretta della struttura geometrica dello spaziotempo (per non parlare del fatto che senza causalità non potremmo neanche sopravvivere: non potremmo neanche attraversare la strada o evitare di morire di fame).

Eugene Wignerc.
Eugene Wigner, fisico e matematico di origini ungheresi, premio Nobel nel 1963 per i suoi studi sull’applicazione delle simmetrie al mondo atomico e subatomico. Suo è il famoso paradosso dell’amico che mette in luce le contraddizioni tra l’evoluzione deterministica e probabilistica di un sistema.
 
Quindi bisogna abbandonare le variabili nascoste. In tal caso, bisogna inventarsi un nuovo tipo di probabilità, che non viene dall’ignoranza di qualcosa, ma dal fatto che quel qualcosa (il valore di una proprietà) non esiste proprio prima di compiere una misura. Il problema è che la probabilità quantistica è del tutto indistinguibile in ogni forma e modo dalla vecchia probabilità classica, dovuta all’ignoranza di qualcosa di pre-esistente. Se vogliamo conservare la causalità relativistica, siamo forzati dal teorema di Bell a introdurre un nuovo tipo di probabilità per poi trovare che questa è la solita probabilità, ma non può emergere dall’ignoranza. Questo è il vero problema della misura.
Oggi ci sono vari tentativi, per esempio da parte di Wojciech H. Zurek e David Deutsch, di unire i due concetti di probabilità, ma gli argomenti addotti non sembrano conclusivi. O forse si riuscirà a sistemare la questione usando il fatto che gli apparati di misura contengono una miriade di gradi di libertà che non possono tutti essere conosciuti: magari la probabilità viene dall’ignoranza di questi? È possibile, ma per ora la teoria è ancora incompleta.
Carlo Rovellid.
Carlo Rovelli ha proposto un’interpretazione della meccanica quantistica in cui solo le proprietà relazionali dei sistemi quantistici sono reali.
 
Torniamo al povero amico, rimasto bloccato nel laboratorio isolato. Ricapitolando: Ghirardi, Rimini e Weber risolvono il paradosso cambiando la teoria; molti fisici fanno finta di niente; la meccanica bohmiana lo risolve uccidendo la causalità e assegnando variabili nascoste diverse all’amico e a Wigner (quindi quello che a Wigner sembra deterministico, è probabilistico per l’amico). Altre soluzioni? L’interpretazione dello stato relativo di Hugh Everett III risolve il paradosso dicendo che i punti di vista di Wigner e dell’amico sono consistenti, perché se l’amico rompe l’isolamento e comunica a Wigner il risultato della misura, allora anche per Wigner l’evoluzione diventa probabilistica (perché non è più un sistema isolato), mentre se Wigner vuole verificare che l’evoluzione dell’amico è deterministica, deve fare una misura che non può rivelare il risultato dell’amico, anzi rivela contemporaneamente tutti i possibili risultati che l’amico potrebbe vedere: una soluzione rocambolesca del problema! Un’altra soluzione suggestiva, di Carlo Rovelli, suppone che i valori delle proprietà degli oggetti hanno solamente significato relazionale e non assoluto: il valore di un oggetto ha significato rispetto ad un altro e questo, nuovamente, salverebbe la causalità. Esistono altre interpretazioni della meccanica quantistica? Ne esistono a bizzeffe, tant’è che se uno chiede a 10 fisici teorici otterrà almeno 15 interpretazioni diverse, perché alcuni ne hanno più di una! Esiste persino la “homeless interpretation of quantum mechanics” (da non prendere troppo sul serio!), proposta da Chongo Chuck, che è in realtà un clochard che si arrangia scroccando i sacchi a pelo nelle tende degli scalatori del parco di Yosemite in California. In conclusione, se siete amici di un fisico, non cascate nel tranello di entrare in un laboratorio isolato.

Biografia

Lorenzo Maccone è professore presso il Dipartimento di Fisica dell’Università di Pavia e associato all’INFN di Pavia. La sua attività di ricerca riguarda i fondamenti della meccanica quantistica, la teoria dell’informazione, computazione e misurazione quantistica.


icon-pdf [scarica pdf]

 
DOI: 10.23801/asimmetrie.2022.33.3
 

 ©asimmetrie   Istituto Nazionale di Fisica Nucleare / via E. Fermi 40 / 00044 Frascati [Roma] Italia
Ufficio Comunicazione INFN / P.zza dei Caprettari 70 / 00186 Roma Italia
Registrazione del Tribunale di Roma n. 336/2012 del 7 dicembre 2012
powered by Multimedia Service e INFN-LNF servizio di calcolo
Informativa sulla Privacy e Cookie Policy